Today’s dry suits are very different from the dry suits first used for sport diving. New materials make the modern dry suits lighter, tougher, and more resistant to abrasion. Used properly, dry suit valves provide incredibly precise buoyancy control. Waterproof zippers make the suits easy to don and remove. Improved construction techniques give many dry suits a longer useful life than most wetsuits. Advanced features offer more comfort and improved fit. With all of the features available in dry suits today, it’s possible to select a dry suit that will precisely fit your needs.

Types of Dry Suit Material

There are numerous types of dry suit material commonly available. As new fabrics are developed, we will certainly see additional new materials put to use. Any material that is waterproof and can be adequately joined together, or “seamed,” could conceivably be used to create a dry suit.

The type of material your dry suit is made from will determine the characteristics of the suit more than any other single feature. For this reason, we’ll discuss the materials dry suits are manufactured from first, followed by a discussion of suit features, such as zippers, valves, and other items.

The most common materials used for dry suits are foam neoprene, crushed neoprene, rubber coated fabrics, urethane coated fabrics, and vulcanized rubber. Each material has its own set of characteristics that will affect the performance of the dry suit and the way it can be used.

Hybrid suits are also available that combine Trilaminate material with crushed neoprene. Other combinations may include materials such as Cordura® with butyl rubber. Dry suits for tropical environments may be made from a combination of breathable yet waterproof materials such as certain types of Trilaminates and Cordura®.

Foam Neoprene Dry Suits

There are numerous manufacturers of foam neoprene dry suits. Many are made by wetsuit shops that specialize in custom dry suits from foam neoprene.
Types of Dry Suits

These suits are among the least expensive of all types of dry suits.

Foam neoprene dry suits are assembled from sheets of neoprene rubber, the same material used to make wetsuits. The rubber is cut to the pattern of the panels of the suit. The material is glued together using wetsuit cement.

Since wetsuit material is used, any color of neoprene material used for a wetsuit can also be used for a dry suit.

Each seam of the suit is stitched on a sewing machine with heavy duty thread. Normally, a “blind” stitch, that doesn’t penetrate through the suit, is employed. To help ensure the integrity of the seams, some manufacturers coat the seams or use special sealing techniques.

Some foam neoprene dry suits are equipped with attached boots, while others are supplied with ankle seals instead. Suits that are designed this way must be used with wetsuit booties. These suits cost less, but offer less thermal protection.

Most foam neoprene suits are tailored to fit the body rather closely. In fact, in many cases, divers do not use much additional insulation underneath them. They merely rely on the inherent insulation of the neoprene itself and the layer of air trapped inside it. This arrangement will work at moderate temperatures and shallow depths, but will not be satisfactory for colder or deeper waters. In northern California, where scuba is not permitted to be used for abalone diving, foam neoprene dry suits are popular with many divers.

In situations where a foam neoprene dry suit leaks, you still have the benefit of the insulation of the neoprene material. Foam neoprene dry suits are also the only type of dry suit that are inherently buoyant. With a snug fitting foam neoprene suit, with little or no additional insulation, even if the suit floods completely you won’t experience much of a change in buoyancy. Loose fitting foam neoprene suits, will experience a greater buoyancy change if the suit no longer holds air.

All foam neoprene suits suffer from a loss of buoyancy and insulation at depth, just as a wetsuit does. This drawback should be considered before purchasing a suit of this type.

Over time, the buoyancy and insulation capabilities of a foam neoprene dry suit will decrease as the cells of the suit break down. Each time you dive, a certain number of cells collapse due to the increased pressure underwater. Just the action of swimming, bending, and working with your arms will break down the neoprene cells, especially in high wear areas like the knees, shoulders, and elbows.

Once the cells of the suit begin to break down it is very difficult to keep a foam neoprene dry suit dry. This action will begin to weep water into the suit. The only way to repair a suit in this condition is to actually cut out and remove the damaged section of the suit.

Punctures in foam neoprene dry suits are difficult to locate and repair. Any puncture introduces water into the cellular material of the suit. Repairs to a foam neoprene suit can only be performed when the suit is completely dry.

The life expectancy of a foam neoprene dry suit will vary between 200 and 300 dives, depending upon your individual style of diving and the care you give your suit. Smog and ozone are particularly detrimental to all types of diving gear, especially foam neoprene.

Crushed Neoprene Dry Suits

Crushed neoprene is a very tough, yet flexible material. It is an excellent material to use to make a dry suit.

Crushed neoprene starts out as a thick sheet of foam neoprene rubber. An extremely heavy duty nylon is bonded to the neoprene. After the suit is built, it is then “crushed” in a proprietary process. The resulting material is very thin, has a great deal of stretch, and is extremely rugged. The nylon used on the exterior of crushed neoprene material is among the most abrasion resistant of all dry suit materials. The process is patented, and is very labor intensive when done properly.

Dry suits made from crushed neoprene can be tailored from start to finish. This helps give the suit an outstanding fit. Due to the tremendous stretch of crushed neoprene, the suit can be customized to be quite snug and a very supple suit results.

Properly fitted, crushed neoprene dry suits typically have a low internal volume. They also tend to have fewer folds and wrinkles than vulcanized rubber dry suits and certain other urethane coated suits. This makes this type of suit flexible and easy to use for swimming.

Due to the nature of the crushed neoprene material, suits made from this fabric have slightly higher insulation values than dry suits made from vulcanized rubber or urethane coated fabric. This will allow you to use lighter dry suit underwear than you might normally select. Most divers find they can dive in waters three degrees cooler than the rating of their underwear when they wear a crushed neoprene suit.

One of the few drawbacks of crushed neoprene material is that to make permanent repairs, the material must be completely dry. The suits themselves are also heavier than some of the lighter weight urethane and Trilaminate suits. However, for the diver who dives aggressively, such as a wreck diver or professional diver, crushed neoprene material is probably one

Photo courtesy of Diving Unlimited International.
Types of Dry Suits

Compressed neoprene material is also used to make dry suits. This is not the same material as crushed neoprene and does not have the same density, which results in a suit that is not quite as rugged as crushed neoprene.

Urethane Coated Fabric Dry Suits

Dry suits made from urethane backed nylon fabric became quite popular during the 1980s. Urethane is a synthetic material that creates a waterproof barrier when it is properly applied to nylon. Dry suits made from this material are commonly referred to as “pack cloth,” or more correctly “polyurethane laminate” dry suits.

Nylon fabric is normally graded according to a rating system known as “denier.” Generally speaking, the higher the denier number, the heavier the fabric. For example, 420 denier nylon is heavier than 210 denier nylon. This heavier fabric is more resistant to abrasion, but it is heavier in weight and less flexible.

To assemble a urethane fabric dry suit, the material is cut to the pattern and stitched together. To produce a watertight seam the joint must be sealed with a heat tape machine that welds a urethane tape over the seam. This type of dry suit is common because it is relatively easy to manufacture, and less expensive.

In a more complex assembly procedure, all of the seams are folded twice and then stitched. Although this method requires more labor and is more expensive, it produces a reliable seam.

Urethane coated fabrics are used to make some of the most light weight dry suits. The material is reasonably flexible.

Most nylon fabrics have little or no stretch. This is an important consideration in the design of a dry suit made from this material. In order to provide the room a diver needs to get into or out of a suit, and freedom of movement in the water, there must be enough excess fabric to compensate for this lack of stretch. This is one of the reasons why certain dry suits fit the way they do, i.e., loose and baggy.

The estimated life span of a dry suit made from urethane coated nylon material is approximately ten years of regular diving activity. When the urethane starts to break down this will show up as cracking in the material. This suit has a heavy duty nylon exterior with a polyurethane inner layer.
material. When a suit delaminates early in its life it is usually because the material was overheated during the seam sealing process.

TLS Dry Suits

TLS is an abbreviation for Trilaminate suit. The layers in TLS material are tightly woven nylon with a layer of butyl rubber in between. The butyl is a superior rubber to prevent chemical penetration.

TLS suits are stitched and the seams are sealed. As with other coated nylon fabrics, good seam construction is essential.

TLS suits are among the lightest weight yet strongest types of dry suits. The material is highly resistant to deterioration from smog and ozone. The suits dry very quickly after diving or rinsing.

Trilaminate material is also available in a very thin, breathable configuration that is used for diving in the tropics. The cut of these suits tends to be a bit more snug than a typical cold water dry suit, since the warm water suit is designed to be used with less insulation. For long duration dives in warm water, this is an especially good way to keep warm.

TLS suits are quick and easy to repair. The suit is easily patched with Aquaseal® if punctured. The estimated life of a properly made and maintained TLS suit is up to ten years of active diving.

Vulcanized Rubber Dry Suits

Vulcanized rubber dry suits have been around for many years. The majority of these suits are made from a combination of natural and synthetic rubber known as EPDM.

Vulcanized rubber is an excellent dry suit material. It dries quickly and can be patched in much the same way that you repair an inner tube or inflatable boat.

Vulcanized rubber dry suits must be made from the right combination of materials. Without sufficient synthetics, the suits are prone to ozone attack and rapid deterioration.

It takes the right combination of materials to keep a vulcanized rubber suit from “ballooning” when inflated. The amount of stretch in the suit is primarily a function of the lining inside.

The inside of a vulcanized rubber dry suit is normally covered with a soft fabric. This makes it easier to dress into the suit. The fabric also provides a surface where moisture produced by your body will condense. The waterproof barrier is on the outside of the suit.
Types of Dry Suits

Manufacturing a vulcanized rubber dry suit is different from the other suits described thus far. The seams of these suits are actually fused together under heat and pressure. In theory, the material should “cross-link,” making the rubber into a one piece garment. If you look at the inside of these suits you will see that they are stitched along the seams, but this is only to hold them together prior to vulcanization.

Although vulcanized rubber suits have good stretch, they usually fit most divers rather loosely. The reason for this is that the manufacturing process for this type of suit is very expensive and most manufacturers offer no more than four or five sizes.

While vulcanized rubber suits can be “customized”, all of the tailoring occurs after the suit is manufactured. A skilled technician can alter a vulcanized rubber suit to fit almost any diver.

Some suits are made from vulcanized rubber material, but the seams are not vulcanized. Instead, the vulcanized material is merely glued together.

Vulcanized rubber dry suits are available in a variety of thicknesses; from very light material through extremely heavy material designed for commercial diving. The heavier the material, the more abrasion the suit can withstand. Vulcanized rubber dry suits are normally supplied with latex seals.

Cordura®

Cordura® is an especially rugged fabric that is more durable than polyesters or nylon by themselves. It is a type of weave of material that is normally referred to as “ballistic” nylon. When it is bonded to a waterproof base material and used on the exterior surface of a dry suit, it makes an especially rugged dry suit. It is a high performance fabric.

Dry suits made from Cordura® must be cut a bit more generously than those made from material that has some stretch, since the material has no elasticity.

Cordura® dry suits.
Essential Features for All Dry Suits

The essential features for all dry suits, besides the suit material, include the wrist and neck seals, zippers, and valves. Beyond these primary items, all other features are considered “optional.”

Hybrids and Other Materials

Dry suits today are often made from a combination of materials that were not formerly used together, but when combined in particular ways, make a lot of sense. These suits are sometimes referred to as “hybrids.” For example, some suits may have a crushed neoprene bottom, and a Trilaminate upper torso.

Other suits combine stretch nylon with foam neoprene, sandwiched between another layer of stretch nylon.

Dry Suit Reliability

Most dry suits today are extremely reliable, provided you follow a reasonable program of maintenance. If you purchase a good quality dry suit from a reputable manufacturer, your dry suit should provide you with many years of excellent service.

It’s important to purchase the right type of suit for your particular application. A tropical dry suit is not designed for hard-core wreck diving on the east coast of the U.S. or in places like Scapa Flow in the United Kingdom. A heavy duty vulcanized rubber suit will not be the best choice if you are an underwater photographer who does lots of swimming to hunt for critters to film underwater.
Types of Dry Suits

Wrist and Neck Seals

There are two types of seal materials that are commonly used for dry suit wrist and neck seals. Latex is one popular material and foam neoprene is another. Each material has its own set of advantages and disadvantages.

Neck seals and wrist seals on most foam neoprene suits are made from thin foam neoprene. Although latex seals can be attached to a foam neoprene suit, this is not a standard procedure for the majority of manufacturers. Foam neoprene neck seals should never be cut, but they may need to be stretched before they are used the first time.

Foam neoprene neck seals may be stretched over a standard 80 cubic foot scuba cylinder and allowed to stand this way overnight. Foam neoprene wrist seals may be stretched over a tin can that is larger than the seal and allowed to remain this way for 12 hours.

Latex seals are the most common dry suit seals in use today. Latex seals have more stretch than foam neoprene and provide a very smooth fitting, comfortable seal. They create the least pressure on the diver’s wrists and neck.

It is important to remember that all seals restrict blood flow somewhat. At the neck, too tight a neck seal will mean less blood going to your head, which could cause you to pass out. Restricted blood flow also means restricted heat flow to the extremities.

Dry suit seals are supplied in a cone or “bell” shape. Since most dry suits are sold as stock suits, it is not possible for the manufacturer to know the neck size of the person who buys the suit. By supplying seals that are cone shaped each diver can trim the neck seal to the size they feel is most comfortable.

Latex wrist seals can usually be supplied in different thicknesses. Thicker latex seals are not more resistant to punctures, but are less vulnerable to tears. They are much more difficult to don and remove by yourself.

Many divers like latex seals because they are very quick to repair. A puncture in a latex seal can be fixed with patches similar to those used to repair inner tubes.

New latex seals almost always need to be trimmed for use by the diver. Generally speaking, the circumference of a latex seal should be just a bit smaller than the circumference of your neck or wrist at the smallest part. The exact size will vary with the thickness of the seal material and the firmness of your

Neoprene seals will almost always need to be stretched before use. Use caution and do not leave the neck seal stretched for too long a time over too large a cylinder. The material has memory and the seal may become too large.
muscle tissues in your neck and wrist. The seal must be snug enough to be watertight, but not so tight as to interfere with blood circulation. If your skin bulges over the edge of the seal, it’s too tight.

To trim a latex neck seal, it’s a good idea to have your buddy help you. Have your buddy hold the seal at opposite ends so that the neck opening is pinched together. This will, in effect, create two “edges” to the seal. Your buddy should pull the two ends away from each other so that the latex is under a slight tension. You are actually cutting through two thicknesses of material at the same time. Some seals are manufactured with raised lines on them that serve as cutting guides.

Both “edges” of the seal must be parallel to each other. Use the sharpest, largest scissors you can find and trim the seal, removing a 1/4 inch ring of material at a time. Children’s paper scissors are not up to this task.

Start your cut at the back end of the scissors, with the scissors as wide open as possible. When the scissors are about 3/4 closed, stop, open them up again, and move them forward. Make the longest cut possible as you trim to avoid nicks or rough edges. Try the seal on when you are close to the circumference you want to achieve.

When you get close to removing the final ring of material, stop! Try the seal on and see how it fits. You don’t have to put the whole suit on, just don the seal by itself. If it is snug, but not uncomfortable you should try it as it is for a day of diving. Test the size of the neck seal with your chin up. This makes the muscles in your neck tighter and your neck bigger.

Be careful not to trim too much, because once you have gone too far it is impossible to reattach the latex. If this happens you will need to install an entirely new neck seal.

Quick Replacement Seals

The latex seals are among the most vulnerable part of all dry suits. In the past, if your wrist or neck seal was damaged, your diving day was pretty much over. Today there are a number of seal designs that allow you to quickly replace these seals if they are damaged in the field.

One type of design for quick replacement wrist seals utilizes a hard plastic ring that is permanently attached to the suit, with a groove for a large o-ring to capture the wrist seal. The seal snaps over the plastic ring and a separate large rubber o-ring traps the wide end of the wrist seal in the groove. If your wrist seal is torn or
Types of Dry Suits

Punctured, all you need to do is remove the o-ring, discard the damaged seal, and snap a new wrist seal in place.

Once you have the seal in position, the o-ring is stretched back onto the ring, locking the seal in position. This is a simple effective design for rapid seal replacement. The only drawback to this design is the large rigid ring is bulky and inconvenient for divers who engage in lobster diving or other activities where you need to reach into tight spaces.

Another design for rapid seal replacement is a system that uses two interlocking surfaces, similar to a Zip-Loc® bag. This type of system is among the easiest and quickest to use, and works for both wrist and neck seals.

To assemble these interlocking seals, a small amount of soapy water is used to lubricate the sealing surfaces. The seals are then pinched together tightly to help ensure a watertight seal. It's essential to make sure the seals are properly installed prior to diving to avoid any possibility of leakage.

Dry Suit Zippers

The zippers used in dry suits are very similar to the zippers used in an astronaut’s space suit. Dry suit zippers must be both waterproof and pressure proof.

The zipper teeth are made from bronze. They seal by compressing a rubber sealing surface between the inner teeth of the zipper. Every dry suit zipper includes three essential parts; the slider, the teeth, and the tape.

Dry suit zippers should be as rugged as possible. Heavy duty zippers may last longer, but they are also more expensive. Selecting a dry suit zipper is a trade-off between durability and cost. Larger zippers may be a bit more durable, but they are also more difficult to close and more restrictive to your movement in the water.

Dry suit zippers can not be repaired if the tape is torn or the teeth “split” behind the slider. This means that once your zipper goes bad, it must be replaced. This is an expensive process, partly because the zipper is costly, and partly because it takes a qualified dry suit repair person to replace a zipper. The most common zipper failure occurs when the tape tears between the teeth. Sliders can also fail.
Optional Features for Dry Suits

Buying a dry suit is a bit like buying a car; there are many options available. The price you pay for a dry suit will largely be determined by the material, its capabilities, and the number of options you select. Generally speaking, the more options on the suit, the more expensive it will be. However, these options can make a big difference in how much enjoyment you get out of your dry suit.

Suspenders (also known as “braces” in Great Britain)

Suspenders are one of the features that can help make the difference between a truly comfortable dry suit and one that is just tolerable. On some dry suits suspenders are an option, while on others they are included as standard.

Most dry suits are cut somewhat loose and baggy. This is a necessity to give you the room to get your arms, legs, and head into the suit because most dry suit materials don’t stretch. The extra room provides for changes in underwear thickness during different seasons. This also allows dry suits to tolerate changes in your personal body weight much better than wetsuits.

Once the suit is on, the suit hangs from your shoulders. Without suspenders, a substantial amount of material will hang down in your crotch. This excess material makes it more difficult to swim, walk, or climb a ladder. The effect of this excess material is roughly equivalent to tying a rope around your thighs and trying to swim. It’s possible to move, but you don’t have the same range of motion. Divers who use suits without suspenders usually pull their suits up around their waist just before they enter the water.
Types of Dry Suits

Dry suits equipped with suspenders are much more comfortable to wear. You adjust the suspenders to pull the excess material snugly up into your crotch. This makes the dry suit fit and feel better. You will find you have greater freedom of movement while wearing a dry suit that comes with suspenders compared to a similar suit with no suspenders.

Another nice thing about suspenders is that they allow you to peel the top of your dry suit down between dives, without having the suit fall off. This makes it very comfortable to walk around on the deck of a boat or on the beach.

Ankle Straps

Ankle straps are another feature that will make certain types of dry suits easier to use and may help to increase your safety. Although they are not mandatory in a dry suit, ankle straps may also help some suits to fit better. The main purpose of the ankle strap is to help prevent your feet from coming out of the boots of your dry suit when you are inverted underwater.

Many dry suits today come with attached “soft” boots with hard soles. One of the important safety aspects of ankle straps is that they help to keep your feet secure in this type of dry suit boot.

If your feet pop out of your boots, your fins will pop off, making it difficult to regain control. This situation must be avoided. Proper training and diving procedures should prevent this from happening, but if it does it becomes an emergency of the highest order.

Dry Suit Boots

The majority of dry suits come with some type of attached boot. These boots usually are equipped with a hard sole and may be molded from a material that is different from the body of the suit. The most commonly used material for dry suit boots is some type of vulcanized rubber.

Soft Socks/Hard Boots

Many dry suits today are offered with an attached soft “sock” designed to be worn with a rugged overboot that helps protect the sock. This type of design is very popular.

The advantages of the soft sock/hard boot combination include:

- Superior foot protection for walking on rock surfaces
- Arch support for walking on dry land and climbing ladders
- Ankle support when you are carrying a heavy tank and weights
- No possibility of the feet of the suit

Ankle straps help to keep your feet more firmly in the boots.
ballooning when the boots are on your feet
 • Excellent protection for the dry suit boot from punctures
 • Cheaper to replace when the boots wear out.

The disadvantages of this type of dry suit arrangement are that the boots require the largest possible fins and that you must remember to pack the boots along with the rest of your gear whenever you dive. If you forget your boots, your fins usually won’t work with the dry suit “socks” by themselves.

Crotch Straps

Crotch straps usually come as standard equipment in dry suits that have a telescoping torso for self-donning. In a self-donning dry suit, the torso of the suit “telescopes” or extends to aid entry into the suit. Once the suit is zipped, the telescoping portion of the suit folds under and is held in place with a crotch strap. Underwater, the water pressure actually holds the suit in position.

Convenience Zippers

A convenience zipper is a small waterproof zipper mounted in the crotch area of a male diver’s suit, to allow the diver to urinate on the surface between dives without removing the suit. It’s essential to remember to close this zipper completely after use, not to use the zipper underwater, and to take care when closing the zipper to avoid catching your underwear or any delicate parts of your anatomy in the zipper!

Self-Don vs. Shoulder Entry

Another important decision is whether you want a “self-donning” dry suit (front zipper) or a rear entry suit. There are advantages and disadvantages to each.
Types of Dry Suits

Technical Diving with a Dry Suit

If you plan to engage in extended range dives, i.e., dives with bottom times that exceed one hour, you may want to invest in what is known as a “Pee Valve” for your dry suit. A “Pee Valve” does exactly what you would expect – it allows you to urinate while wearing a dry suit, and to vent the urine from the suit without fouling the inside of your suit. These valves are also sometimes referred to, in more refined circles than ours, as “overboard discharge valves.” There is a female adaptation, but it is less comfortable to wear.

The valve penetrates the suit and has an external vent control. The diver must wear a condom which connects to a hose that connects to the valve. As an alternative, male divers may use an external catheter that will hold a fixed amount of urine until it can be disposed of topside.

The only alternative to using a Pee valve is to wear adult diapers next to your skin, beneath your dry suit underwear. Since many divers find this practice distasteful, a Pee Valve is a good alternative.

With a self-donning suit you can get in and out of the suit by yourself, provided your body is flexible enough to do so. If you have a shoulder injury, this may not be possible. A male diver can also open the zipper and urinate topside without the need to remove the entire suit. The other disadvantages of self-donning suits are that they tend to be more expensive and are not quite as streamlined as shoulder entry suits may be.

With a shoulder entry suit, you are dependent on someone else to assist you with donning and removing your suit. On the positive side, these suits tend to be less expensive and may be more streamlined.

Pockets

Depending on the type of diving that you do, a pocket may be a useful feature to have added to your suit. If you are an underwater photographer, a wreck diver, or a scientist, a pocket can be a useful place to store all sorts of accessories.

Pockets should be self-draining so that they won’t hold water after you have surfaced. They must be located where they will not interfere with other equipment.

Pockets can be mounted almost any place that is convenient for you. The two most common positions for pockets are on the upper thigh or on the chest.

Just be sure to avoid placing any large, sharp objects in your dry suit’s pocket(s). Sharps objects can potentially puncture your dry suit.
Knee Pads
Knee pads are standard equipment on most dry suits. They are absolutely essential for all divers, but particularly important for underwater photographers, lobster divers, and wreck divers.

Knee pads on foam neoprene suits can be a problem, however, since the cells of the foam material break down under the knee pad. The material becomes spongy and impossible to keep dry.

Most dry suit knee pads are made from the same material as the base material of the dry suit itself, although some are heavier. Keep in mind that all knee pads restrict movement to a certain degree.

Custom vs. Stock Sizing
A dry suit need not fit you perfectly. Dry suits are designed to fit somewhat loosely, to accommodate a range of underwear combinations. If you have an “average” body, you probably can wear a stock dry suit. However if you are unusually thin, tall, short, or stocky, you may want a custom dry suit.

The advantage of a custom dry suit is that it can be tailored more closely to your body shape. A suit that is made for you will have a minimal internal volume and hold less air. For this reason, a custom suit will let you dive with considerably less weight than a stock dry suit. In addition, a custom suit will have less excess material to create drag, may provide more freedom of movement, and is more attractive.

Almost all dry suits can be ordered in custom sizes. However, some can be tailored from scratch where others (such as vulcanized rubber suits) can only be modified after the basic suit is assembled.

Doing Your Homework
Before you buy a dry suit, we recommend that you spend some time on the Internet and visit the web sites of the different dry suit manufacturers. It also pays to talk to other divers who do the same type of diving that you do, to see what their experiences have been with different dry suits. There are big differences between the various designs and materials that are hard to appreciate until you have some dry suit experience and have tried a particular suit.

Selecting a Dry Suit to Fit You
If you are buying a new dry suit, go to the dive store and put on the bulkiest dry suit underwear you anticipate using before you don the suit. This is very important, especially if the suit fits you snug.

Once you have the suit zipped up, test to see if you have complete movement in the suit. You should be able to freely squat, bend, kick, and reach. If your movement is hampered in any way by the suit or underwear, they are probably too tight. It is better to have a dry suit that is a little bit loose than one that is too tight. Most people give all of their attention to the fit of the suit without considering the underwear.